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Fig. 1. We propose a compact single-shot spectral imaging method that enables us to capture hyperspectral images using a conventional DSLR camera
equipped with an ordinary prism only. Our computational method reconstructs full spectral information of a scene from dispersion over edges. Therefore,
our setup requires no coded aperture mask and no collimating optics, which are necessary for traditional hyperspectral imaging. Our method allows for
simple and cost-efficient hyperspectral imaging with high accuracy. (a) Our acquisition setup. (b) Input image. (c) Reconstructed hyperspectral image (d)
Corresponding captured spectral channels. (e) Spectral plots of two patches from the captured ColorChecker, compared to ground truth.

We present a novel, compact single-shot hyperspectral imaging method. It
enables capturing hyperspectral images using a conventional DSLR camera
equipped with just an ordinary refractive prism in front of the camera lens.
Our computational imaging method reconstructs the full spectral informa-
tion of a scene from dispersion over edges. Our setup requires no coded
aperture mask, no slit, and no collimating optics, which are necessary for tra-
ditional hyperspectral imaging systems. It is thus very cost-effective, while
still highly accurate. We tackle two main problems: First, since we do not rely
on collimation, the sensor records a projection of the dispersion information,
distorted by perspective. Second, available spectral cues are sparse, present
only around object edges. We formulate an image formation model that
can predict the perspective projection of dispersion, and a reconstruction
method that can estimate the full spectral information of a scene from sparse
dispersion information. Our results show that our method compares well
with other state-of-the-art hyperspectral imaging systems, both in terms of
spectral accuracy and spatial resolution, while being orders of magnitude
cheaper than commercial imaging systems.
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1 INTRODUCTION
Hyperspectral imaging has wide applicability in many fields such as
physically-accurate material appearance, automatic segmentation
and matching, material classification, or material inspection for min-
ing and geology [Kim 2013; Kim et al. 2012a,b, 2014; Lin et al. 2014;
Wagadarikar et al. 2008]. However, hyperspectral imaging systems
are still very expensive, with starting prices falling in the range
of $ 25,000 – $ 100,000. They require specialized hardware such as
collimating optics, or a lithographic coded aperture with microscale
patterns and a diffraction grating [Choi et al. 2017; Jeon et al. 2016;
Lee and Kim 2014; Lin et al. 2014; Wagadarikar et al. 2008], in addi-
tion to professional engineering skills for handling and assembling
such components. In general, these systems are built for specific
purposes such as aerial remote sensing, or military applications; as
such, they are not affordable nor practical for ordinary users.

Traditional scanning systems isolatemeasurements for eachwave-
length using filters, which results in a slow process; moreover, the
spectral resolution is limited by the type and number of filters used.
Hyperspectral imaging techniques such as coded aperture snapshot
spectral imaging (CASSI) employ a coded aperture as an essential
element to capture spectral information. Subsequent spectral re-
construction of the image relies on a spatially-invariant dispersion
model, for which collimating optical setups are required This alters
significantly the form factor of the system.
To overcome these limitations, we present a novel single-shot

technique for hyperspectral imaging, which requires just a conven-
tional DSLR camera and a simple glass prism placed in front of
the lens. It thus avoids expensive or specialized hardware, requires
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no advanced skills, and has a minimal impact on the form factor,
allowing general users to freely capture hyperspectral information.
Using a simple prism presents two main technical challenges:

First, existing spatially-invariant dispersion models cannot be ap-
plied to our system. This is due to the absence of collimating optics
(common in professional hyperspectral imagers) and the resulting
wavelength-dependent, nonlinear refractive distortion created by
the prism, as shown in Figure 1(b). Second, since our setup includes
no coded aperture mask, available spectral cues are sparsely limited
as dispersion over edges. In addition, since our setup captures a
scene in its full resolution without using a diffraction grating, spec-
tral cues are also sparse in a single direction. The new reconstruction
algorithm must be able to reconstruct the full spectral information
of a scene from sparse dispersion over edges, without relying on
spectral signatures from a coded aperture.

To solve these challenges, we make the following contributions:
First, we introduce a novel image formation model that predicts the
perspective projection of dispersion, yielding the dispersion direc-
tion and magnitude of each wavelength at every pixel. Second, we
propose a novel calibration method to estimate the spatially-varying
dispersion of the prism, given the absence of collimating optics in
our setup. Last, we develop a novel reconstruction algorithm lever-
aging sparse dispersion over edges. Our reconstruction algorithm
consists of three main steps: edge restoration, gradient estimation,
and spectral reconstruction. See Figure 2 for an overview of our
algorithm.
In summary, we introduce a novel, single-shot hyperspectral

imaging method, using only a single prism placed in front of a
conventional camera. Our system requires no additional hardware,
keeping its form factor compact and simple.We obtain hyperspectral
images at virtually the full resolution of the imaging sensor, while
making hyperspectral imaging practical.

2 RELATED WORK
Hyperspectral imaging has been researched extensively in the last
decade, e.g., [Kim 2013]. Existing methods can be categorized into
three different groups: spectral scanning, computed tomography
imaging, and compressive hyperspectral imaging.

Spectral Scanning. The most straightforward approach in hyper-
spectral imaging is to isolate measurements using different band-
pass or liquid crystal tunable filters, scanning the entire spectrum
to form the final image [Gat 2000; Lee and Kim 2014; Rapantzikos
and Balas 2005]. In addition, using dispersive optics such as a prism
or a diffraction grating, scanning-based approaches can image each
wavelength in isolation through a slit, using for instance whiskb-
room or pushbroom scanners [Brusco et al. 2006; Porter and Enmark
1987]. While scanning yields high spatial resolution, the spectral
resolution of this approach is limited by the number of filters used.
In contrast, our hyperspectral imaging system captures an image
with continuous dispersion with a single shot, resulting in higher
spectral resolution without severely sacrificing spatial resolution.

Compressive Imaging. Coded aperture snapshot spectral imaging
(CASSI) [Gehm et al. 2007; Wagadarikar et al. 2008] was developed
in an effort to overcome the limitations of spectral scanning sys-
tems. A coded aperture is placed in front of or behind a prism (or a

diffraction grating) via collimation in the optical path of the imaging
system. The coded aperture is used to encode spectral signatures,
which are later used to reconstruct the compressive input into a com-
plete hyperspectral image. Multiple sampling techniques have been
introduced to further improve accuracy using a micro-translation
stage [Kittle et al. 2010], or a kaleidoscope [Jeon et al. 2016]. Lin
et al. [2014] and Choi et al. [2017] introduced learning-based solu-
tions for enhancing spatial and spectral resolution of reconstructed
images. Traditional compressive imaging systems are large and ex-
pensive due to additional elements such as collimating optics and
coded masks, making them bulky and hard to handle in practice.
In contrast, our system is extremely compact, needing just a prism
in front of a regular camera lens, without any coded aperture nor
complicated collimating optics.

Recently, Cao et al. [2011a] proposed a low-cost spectral imaging
method, a so-called prism-mask multispectral video imaging sys-
tem (PMVIS). The authors isolate spectral dispersion by placing a
large mask of pinholes in front of a prism, thus creating a simple
setup with affordable elements. However, such a large mask must
be carefully installed in front of a large black box, at a relatively
large distance from the prism, in order to properly isolate dispersed
regions. This results in a large form factor, again hindering usability.
Moreover, the number of holes in the mask determines the spa-
tial resolution of the image, which is much lower than the image
sensor resolution (less than 10%), while overall light throughput is
reduced significantly. Alvarez et al. [2016] proposed a simple system
based on a cheap, off-the-shelf diffraction grating. The system was
designed to recover the spectral signature of visible light sources,
although it cannot reconstruct the full hyperspectral image.

Computed Tomography Imaging. Computed tomography imaging
spectrometry (CTIS) [Johnson et al. 2007; Okamoto et al. 1993] uses
a diffraction grating to split incident light rays into a number of
spectral projections on an image plane. Since multiple sub-images
need to be captured with a single sensor, the effective spatial reso-
lution of the reconstructed images is less than 10% of the original
sensor resolution. Habel et al. [2012] introduced a cheaper solution
for hyperspectral imaging by applying CTIS to a conventional DSLR
camera. However, the system suffers from a similar loss of spa-
tial resolution. In contrast, our system reconstructs hyperspectral
images at virtually the full spatial resolution of the image sensor.

Snapshot image mapping spectrometry [Gao et al. 2010] employs
a micro-mirror array as an image mapper to split incoming rays into
strips, followed by dispersion and imaging with a prism and lens
array. The spectral intensity of a scene point is directly measured
by a single pixel on the camera sensor similar to PMVIS [Cao et al.
2011a]. However, the image mapping sacrifices spatial resolution,
while the system setup requires a prism, a mirror, and a lens ar-
ray, making it complex. In contrast, our proposed system utilizes
a simple setup with specially designed computational algorithms,
allowing for compact hyperspectral imaging without sacrificing
sensor resolution.
Recently, Takatani et al. [2017] employed faced reflectors with

color filters by exploiting multiple reflections through the filters.
However, the system is limited to flat objects, and the spatial resolu-
tion is reduced because multiple reflections of the objects must be
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Fig. 2. Overview of our reconstruction algorithm. (a) We take a dispersed RGB image as an input. (b) We align the dispersed image and reconstruct
edges (Section 5.1). (c) Gradient values are estimated from dispersion (Section 5.2.1). (d) We reconstruct the final hyperspectral image using the gradient
information as spectral cues (Section 5.2.2). The geometric distortion introduced by the refraction through the prism is corrected in the final hyperspectral
image.

captured in a single image. In order to obtain high-resolution spec-
tral images, hybrid imaging systems [Cao et al. 2011b; Kawakami
et al. 2011] have been proposed by employing an additional high-
resolution, trichromatic imaging device with red, green, and blue
(RGB) filters. However, it increases the size of the system, and intro-
duces calibration issues between the heterogenous systems.

Estimating Spectrum from RGB. Several works approximate spec-
tral information from a single RGB input. Smit [1999] proposed a
regression-based method that approximates a spectrum as a lin-
ear combination of basis functions of the standard XYZ matching
functions. The estimation algorithm relies on piecewise smoothness
constraints along the spectrum. Nguyen et al. [2014] proposed a data-
driven approach that learns spectral distributions of the reflectance
of natural objects. While regressing the spectral information from
an RGB input, they use the reflectance model, trained with a hy-
perspectral image dataset, as a prior for optimization. However,
these regression-based approaches can only approximate the actual
spectra. The spectral accuracy of these methods is limited by the
metameristic input of the RGB camera, for which filter bandwidth
is about 100 nm. The spectral information measured by our method
is more accurate than these regression-based approximations.

3 IMAGE FORMATION MODEL
A hyperspectral image can be described as a three-dimensional cube
I (p, λ) ∈ RX×Y×Λ, whereX ,Y and Λ represent the horizontal, verti-
cal and spectral axes, respectively; p represents a sensor pixel (x ,y),
and λ represents wavelength. Different from traditional hyperspec-
tral imagers, we just use a conventional RGB camera, plus a prism
in front of the lens. Our spectral image formulation is therefore dif-
ferent from classic compressive imaging architectures [Gehm et al.
2007; Wagadarikar et al. 2008]. Since the prism disperses incident
rays of light, resulting in shifts of the spectral cube I along λ, we
can describe our image formation model as:

J (p, c ) =

∫
Ω (c, λ) I (Φλ (p) , λ)dλ, (1)

where J (p, c ) is the linear RGB image captured by the camera
(with c ∈ {R,G,B}), Ω (c, λ) is the transmission function encoding
the camera response for channel c and wavelength λ, and Φλ (p)
represents the spatially-varying, nonlinear dispersion caused by
the prism, modeled as a shift operator at each pixel p for each
wavelength λ. We can reformulate this model in a discrete form
as J (p, c ) =

∑
λ Ω (c, λ) I (Φλ (p) , λ), which in matrix-vector form

(a) Original spectral cube (b) Dispersed spectrum (c) Projected dispersion 
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Fig. 3. (a) 3D spectral data cube i: the original data cube consists of two
spatial axes (X and Y ) and one spectral axis (Λ). (b) Dispersed spectrum Φi:
the prism shifts the spectral information along X . (c) Projected dispersion
ΩΦi: the dispersed spectrum is then integrated along the spectral axis,
following the camera response functions. The spectral information of the
original data cube is embedded around edges in the projected dispersion.
Our method takes the projected information with dispersion as input, and
reconstructs the original spectral data cube by analyzing the dispersion
around edges.

becomes:
j = ΩΦi, (2)

where j ∈ RXY 3×1 and i ∈ RXYΛ×1 are vectorized linear RGB
and hyperspectral images, respectively, and Ω is an operator con-
verting spectral information to RGB (refer to Section 6). Last, Φ ∈
RXYΛ×XYΛ is a matrix describing the direction and magnitude of
dispersion per pixel. Figure 3 shows a schematic diagram of the
spectral data cube at each step: i, Φi and ΩΦi.

In the following sections, we will first derive our dispersion func-
tion Φλ (p) in Equation (1) (Section 4); we will then describe our
reconstruction method (Section 5). The camera and prism parame-
ters will be estimated after calibration in Section 6.

4 SPATIALLY-VARYING DISPERSION
Figure 4 presents a schematic view of our prism-based hyperspectral
capture model. Without a prism, a ray of light travels undisturbed
from scene point q, and reaches the sensor at a point pd through
the optical center o of the camera lens. When the prism is placed in
front of the lens, q instead projects through o to new wavelength-
dependent positions pλ on the sensor, after two refractions at siλ
and soλ . Our goal in this section is to obtain the dispersion func-
tion Φλ (Equation (1)), which models the dispersion created by the
prism placed in front of the lens. Traditional compressive hyper-
spectral imagers employ complex collimating optics, which allows
to model dispersion as a simple linear translation [Wagadarikar
et al. 2008]. However, since we do not rely on optical collimation in
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Fig. 4. Without a prism, a scene point q is imaged to pd on the sensor plane,
through the optical center o (dotted line). Introducing a prism, wavelength-
dependent dispersion affects the imaging process. A ray from q of wave-
length λ intersects the surfaces of the prism at s iλ and soλ , being finally
projected on the sensor at pixel pλ (e.g., blue line). For our hyperspectral
imagingmodel, we first derive the refraction functionΨλ relating pλ and pd
for every wavelength in the visible spectrum. Then, we obtain the dispersion
function Φλ relating pλ to a reference-wavelength pixel pλr ef (λr ef =550
nm, see text for the full details).

our compact setup, dispersion in our imaging model becomes both
spatially-varying and nonlinear.

To derive Φλ , we follow a two-stage approach: First, we develop
a refraction function Ψλ for each wavelength, which predicts each
pixel’s wavelength-dependent refractive shift; in other words, it de-
scribes the relation between the direct-ray pointpd andpλ at the sen-
sor. Second, we find per-pixel correspondences for all wavelengths
in the captured image, resulting in our dispersion function Φλ . We
describe these steps in the following subsections. Note that our
single-shot approach does not require a direct capture without
a prism, so pd is never imaged. However, we will rely on pd in
our derivations, and eliminate this dependency when developing
the final dispersion model (Section 4.2). To explicitly take depth z
into account, we redefine points in three dimensional space R3, so
that a pixel (x ,y) on the sensor is now represented as a 3D-vector
[x ,y,−f ]ᵀ, where f represents focal length (see Figure 4).

4.1 Refraction Model
We first seek a refraction model Ψ in matrix form, describing the
refractive shift function Ψλ for every pixel as the relation between
points pd and pλ at the sensor, for which we will describe both a
refracted and a direct ray through o. Note that our refraction model
concerns itself with refracted rays through o, which is different
from the traditional light-through-a-prism model commonly used
to illustrate dispersion.

Refracted Ray . From pλ , we obtain the intersection points soλ
and siλ with simple geometric optics, and using Snell’s law at the
surface of the prism. From siλ =

[
sx , sy , sz

]ᵀ
, using again Snell’s

law, we obtain the refraction direction vector siλq =
[
vx ,vy ,vz

]ᵀ
.

We can then formulate a scene point q as a function of depth z and
wavelength λ, as follows:

q = Θλ (z;pλ ) ≡
[
sx +

z − sz
vz

vx , sy +
z − sz
vz

vy , z

]ᵀ
. (3)

Direct Ray vs. Refracted Ray. We can now formulate the depth-
dependent relation between points pd and pλ by simple perspective

projection, as our function Ψλ describing the refractive shift:

pd = Ψλ (z;pλ ) ≡ −
f

z
Θλ (z;pλ ). (4)

This function Ψλ will enable us to derive our final dispersion
modelΦ as a vector field, which will in turn allow us to establish per-
pixel correspondences along the visible spectrum in the captured
image, as we explain next.

4.2 Dispersion Model
We now seek a dispersion model Φ in matrix form, describing the
dispersion function Φλ for every pixel as the relation between the
points pλr ef and pλ , in terms of the magnitude and direction of
dispersion in the captured image. For this, we leverage our refrac-
tion function Ψλ , relating the position of pd (from the direct ray
through o) to the captured pλ (see Equation (4)). We first select a ref-
erence wavelength λr ef =550 nm for our measurements. Using our
refraction function Ψλr ef , we obtain pixel pd corresponding to the
reference pixel pλr ef , as a function of depth z: pd = Ψλr ef (z;pλr ef ).

( )1 ; dz pλΨ −
( );

ref
z pλ λΦ

dp
pλ

ref
pλ( );

ref ref
z pλ λΨ

Fig. 5. We derive our dispersion
function Φλ (red arrow) by us-
ing our refraction functionΨλr ef
from a reference point pλr ef to
obtain pd , then computing the
inverse function from pd to any
other point pλ .

Then, for any other tar-
get wavelength λ, we calcu-
late the inverse refraction func-
tion Ψ−1λ mapping from pd
to pλ : pλ = Ψ−1λ (z;pd ); Fig-
ure 5 illustrates this process1.
Finally, we obtain our disper-
sion function Φλ , which en-
codes the magnitude and direc-
tion of dispersion, and thus en-
ables us to locate any pixel pλ
from the reference-wavelength
pixel pλr ef as a function of
depth z:

pλ = Φλ
(
z;pλr ef

)
≡ Ψ−1λ

(
z;Ψλr ef

(
z;pλr ef

))
. (5)

4.3 Analysis
Figure 6(a) shows an example of per-wavelength changes in disper-
sion magnitude with varying depth. In particular we measure the
displacement from p700nm to pλ , at a center pixel. We observe that
the magnitude of dispersion increases rapidly with depth z up to
approximately 350mm, then converges after approximately 700mm.
Figure 6(b) shows the resulting spatially-varying dispersion vector
field for all sensor pixels, with the image plane at z=700mm, using
Equation (5). The arrows indicate main directions of dispersion per
pixel, while color codes magnitude. Note that dispersion is more
pronounced to the left due to the varying thickness of the prism.
Other prisms, such as an Amici prism, can be used to mitigate this
effect.
In practice, since a DSLR camera with an ordinary lens can cap-

ture information farther than 350mm, we can simplify our disper-
sion model removing its depth-dependency for larger distances;
the resulting matrix Φ at z=700mm can then be applied in general
situations where the scene is at z>700mm (see Section 5 for more

1We obtain the inverse function Ψ−1λ by interpolation with Delaunay triangulation.
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Fig. 6. (a) Dispersion magnitude changes with depth, as our simulations
show. For all wavelengths, this magnitude increases rapidly up to ∼200mm,
being approximately constant at around ∼700mm. (b) An example of the
dispersion magnitude and direction of every sensor pixel, at a distance of
700mm.

details). This is important, since it allows us to reconstruct spectral
information without the need for depth estimation.

5 SPECTRUM RECONSTRUCTION
Given our image formation model (Section 3) and our spatially-
varying dispersion model (Section 4), we now describe how to re-
construct a hyperspectral image i from a dispersed RGB image j.
The spectrum-to-RGB operator Ω and the dispersion model Φ for
every pixel in Equation (2) are obtained from the calibration of the
camera system (described in Section 6).
Previous reconstruction methods, used in both CASSI and CTIS

approaches, rely on rich spectral cues that exist over all the input
image. In CASSI, using a coded mask and collimation, dispersion
patterns are obtained independently of image structures [Kim et al.
2012a; Wagadarikar et al. 2008]. In CTIS, several dispersed images
along different directions are captured, in addition to a sharp im-
age, at the cost of resolution loss [Habel et al. 2012; Johnson et al.
2007]. Different from these systems, we only use a prism with a
DSLR camera. As a result, our input is a single RGB image with
overlapping dispersion information, and sparse spectral signatures
only at the edges (Figure 7(a)). Thus, our reconstruction problem
is more severely ill-posed. Simply adopting existing reconstruction
algorithms results in poor spectral accuracy, as Figure 18 shows.

We thus develop a novel reconstruction framework for compact
single-shot hyperspectral imaging. Our reconstruction consists of
three main stages: First, an edge restoration stage aligns an input
dispersed RGB image, in order to obtain clear edge information
without dispersion. Second, we estimate spectral information in the
gradient domain using dispersion over the extracted edges. Last,
we recover the hyperspectral image by using the sparse spectral
information of gradients.

5.1 Restoring Edges from Dispersion
Restoring accurate edge information is critical for our reconstruction
algorithm, since edges are the main source to analyze dispersion.
We estimate the spatially-aligned hyperspectral image ialigned ∈
RXYΛ×1 from an input dispersed RGB image j, by solving the fol-
lowing convex optimization problem:

ialigned = argmin
i



ΩΦi − j

22︸       ︷︷       ︸
data term

+α1



∇xy i


1 + β1




∇λ∇xy i


1︸                            ︷︷                            ︸
prior terms

,

(6)

(a)

(b)

(c)

Fig. 7. (a) A RAWRGB image [j in Equation (6)] with dispersion (gamma cor-
rected for visualization). (b) A recovered sRGB image with edge restoration.
(c) Detected edges from the restored image without dispersion.

where ∇xy is a spatial gradient operator, and ∇λ is a spectral gradi-
ent operator. Specifically, the first term describes the data residual
of our image formation model (Equation (2)), while the other terms
are priors. The first prior is a traditional total variation (TV) term,
ensuring sparsity of spatial gradients, and removal of spatial arti-
facts. We introduce a second prior, our modified cross-channel term,
penalizing edge misalignment across spectral channels by pursuing
sparseness in the change of spatial gradients. Note that while the
original cross-channel prior of Heide et al. [2013] computes the
difference between normalized gradient values for every pair of
color channels, we compute the difference between unnormalized
gradient values of adjacent spectral channels, assuming that spectral
signals are locally smooth in adjacent channels. Our cross-channel
prior thus enables us to achieve spatial alignment between spec-
tral channels. We solve Equation (6) with the alternating direction
method of multipliers (ADMM) [Afonso et al. 2011]. Refer to the
supplemental material for more details on the optimization.

Our spatial alignment stage yields a hyperspectral image without
edge dispersion (see Figure 7(b)). However, the accuracy of the
spectral information in ialigned is still incomplete, and therefore
unreliable. To accurately locate edges, instead of applying an edge
detection algorithm directly on the aligned spectral channels in
ialigned, we first project the aligned spectral image ialigned onto RGB
channels via the camera response functions Ωialigned, then apply a
multi-scale edge detector [Dollár and Zitnick 2015]. This achieves
more robust edge detection results, as shown in Figure 7(c). This
extracted edge information will then be used to reconstruct spectral
information from dispersion over edges in the next stage.

5.2 Reconstructing Spectral Information
Themain insight of our spectral reconstruction algorithm is based
on the observation that dispersion over edges can be used as spectral
reconstruction cues, since it relates spectral information with spatial
blur (Figure 8(a)). In particular, we account for spatial gradients
in the dispersed regions around edges to reconstruct a complete
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Fig. 8. (a) Left: image without dispersion; right: the same image with dis-
persion. The orange lines refer to the plots of pixel intensities below. (b)
X-axis gradient images, without and with dispersion. With dispersion, the
spatial gradients reveal the spectral components. (c) Hyperspectral infor-
mation around edges. The marginal projection of the spectrum along the
wavelength axis yields the RGB intensities through the camera functions,
as shown in (a).

hyperspectral image. With a dispersed image with overlapping spec-
tral information as input, as opposed to the rich per-pixel spectral
information provided by a coded mask, the 

ΩΦi − j

22 data term
in Equation (6) is insufficient to reconstruct actual spectral intensi-
ties. Since our spatially-varying dispersion model Φ describes the
relationship between spectral information and dispersed spatial
information (Section 4), we can leverage spatial gradients of the
dispersed image as input to reconstruct spectral intensity around
edges.
Figure 8 illustrates an example. The left column shows pixel in-

tensities (a), horizontal gradients (b), and its hyperspectral represen-
tation (c), along a row in an image without dispersion (orange line).
The right column presents the same information, but with dispersion
through a prism. The spectral information in the dispersion-free
image is projected directly into RGB values, so we cannot trace
back metameristic spectra from the given input. However, in the
dispersed image, even though the spectral information appears as
blur (which is a projection of sheared spectral information), its spa-
tial gradients reveal information about spectral power distributions
along edges. As shown in the hyperspectral representation (c) on
the right column, different wavelengths are sheared by a different
magnitude and direction due to dispersion. Marginal projection of
these dispersed spectra to RGB values along the wavelength axis still
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Fig. 9. (a) Reconstructed horizontal gradients gx for a wavelength of 550 nm.
(b) Spectral power distributions of the orange patch for each stage of our
method, compared to the ground truth. (c) Final reconstructed sRGB image.
(d) and (e) Comparison between the initial reconstruction iopt (d), and after
detail enhancement ifin (e).

leaves cues for spectral reconstruction. We can clearly see the spec-
tral cues in the gradient domain rather than the intensity domain;
each gradient profile of a pixel contains the gradient information of
a specific spectral channel depending on the dispersion predicted
by our model Φ. This motivates us to formulate our reconstruction
problem in the spatial gradient domain.

5.2.1 Gradient-based Reconstruction. We first estimate a stack of
spatial gradients ĝxy for each wavelength, by finding out the spatial
gradients gxy that are close to the spatial gradients of the captured
image ∇xy j, formulating the gradient reconstruction problem as:

ĝxy = argmin
gxy




ΩΦgxy − ∇xy j



2

2︸                ︷︷                ︸
data term

+α2



∇λgxy




1 + β2



∇xygxy





2

2︸                              ︷︷                              ︸
prior terms

,

(7)
where the first term is a data term describing our image formation
model (Equation (1)) in the gradient domain. The following two
terms are prior terms for gradients. The first prior is equivalent
to the spectral sparsity of gradients used in the spatial alignment
stage (Equation (6)), enforcing sparse changes of gradients along
the spectral dimension. The second prior imposes smooth changes
of gradients in the spatial domain, which reduces artifacts.

Given that the spectral signature exists solely over edges, we only
take into account edge pixels for the optimization in Equation (7),
which we solve using ADMM. Refer to the supplemental material for
the details of our edge-based objective reformulation and optimiza-
tion. Figure 9(a) shows the estimated horizontal gradient image for
a wavelength of 550 nm extracted from the dispersion over edges.

5.2.2 Reconstructing the Spectral Image. After obtaining from
dispersion a stack of spatial gradients ĝxy for each wavelength, we
utilize gradient information as strong spectral cues to reconstruct
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the hyperspectral image iopt. Since we do not have any known hy-
perspectral intensity, we cannot directly apply Poisson reconstruc-
tion [Pérez et al. 2003] with boundary conditions. Instead, we formu-
late the following optimization problem to estimate iopt from ĝxy :

iopt = argmin
i



ΩΦi − j

22 + α3



Wxy ⊙

(
∇xy i − ĝxy

)


22︸                                                ︷︷                                                ︸
data terms

+ β3∥∆λ i∥22︸     ︷︷     ︸
prior term

, (8)

where ∆λ is a Laplacian operator for the spectral image i along the
spectral axis, and Wxy is an element-wise weighting matrix that
determines the level of confidence of the estimated gradients in
the previous step. To take into account the directional dependency
of spectral cues, we build our confidence matrix Wxy based on
the extracted edge information, and the dispersion direction n =[
nx ,ny

]
. For non-edge pixels, we assign a high confidence for zero

gradient values. For edge pixels, we assign different confidence
levels for horizontal and vertical components respectively, so that
gradient directions similar to the dispersion direction have a high
confidence value. Specifically, a confidence value,Wk ∈{x,y} (p, λ),
is an element of the matrix Wxy for the horizontal and vertical
gradient components of a pixel p of wavelength λ:

Wk ∈{x,y} (p, λ) =



���nk ∈{x,y}
��� ifp is an edge pixel

1 otherwise
(9)

where |·| denotes absolute value.
The first data termminimizes errors in our image formationmodel

(Equation (2)). The second data term minimizes differences between
the gradients ∇xy i, and the gradients ĝxy from the previous stage.
The prior term in Equation (8) favors spectral curvature smooth-
ness 

∆λ i

22. Note that we do not optimize any spectral gradients
along the wavelength axis. Instead, we improve the stability of our
spectral estimation by accounting for such curvature smoothness
along the different wavelengths. Since Equation (8) consists only of
l2-norm terms, we solve it using a conjugate gradient method.

Detail-Guided Filtering. While the solution from Equation (8)
yields high spectral accuracy, the lack of gradient information on
smooth surfaces may lead to loss of spatial details (see Figure 9(b)).
To restore these details, we apply a guided image filter [He et al.
2013] for detail enhancement. It allows us to enhance structural
details of the aligned image Ωialigned to each reconstructed hyper-
spectral channel, resulting in the detail-enhanced hyperspectral
channel. This leads to our final reconstructed image ifin, with high
spectral and spatial accuracy (Figure 9(c)).

6 CALIBRATION
To reconstruct the spectral information from dispersion, we need to
obtain the camera’s intrinsic parameters, its radiometric response
function Ω (spectrum-to-RGB operator), and the spatially-varying
dispersion matrix Φ of the prism. We calibrate the intrinsic prop-
erties of the camera, which include the focal length f , its optical
center o, and distortion coefficients, using Zhang’s method [2000].
In the following, we describe how to calibrate Ω and Φ.

6.1 Radiometric Response of the Camera
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Fig. 10. Measured camera response
functions (Canon 5D Mark III).

To calibrate the spectral re-
sponse functions of a cam-
era’s RGB channels, we
illuminate a standard re-
flectance tile (Spectralon)
with a solid-state plasma
light (Thorlab HPLS-30-4).
The reflected energy of
each wavelength R (λ) is
then measured by a spectroradiometer (Jeti Specbos 1200) from
400 nm to 700 nm, in 10 nm intervals. At the same time, we capture
band-wise spectral images filtered by an electronic bandpass filter
(VariSpec VIS LCTF) using a DSLR camera (Canon EOS 5D Mark III)
with a 50mm lens (to avoid under- or over-exposure, we capture
raw images with five different exposures). As a result, we obtain
the spectral response of the camera for each band, as a trichromatic
response function Ω ∈ R3×Λ in matrix form (Figure 10). Note that if
these calibration instruments are not available, we can instead use
publicly available datasets of the spectral sensitivity functions of
other DSLR cameras [Jiang et al. 2013].

6.2 Spatially-varying Dispersion of the Prism
This calibration is based on the image formation model described
in Section 4, and consists of three steps: (a) obtaining the extrinsic
position and orientation of the prism with respect to a camera; (b)
obtaining our refraction model Ψ (Section 4.1); and (c) obtaining
our dispersion model Φ (Section 4.2).

Setup. Figure 11(a) depicts our calibration setup. We insert a band-
pass filter between a prism and a checkerboard target, to isolate
dispersion per wavelength. We use five 10 nm bandpass filters from
450 nm to 650 nm in 50 nm intervals2. For each captured spectral
image of wavelength λ, we obtain shifted positions pλ of the corner
pixels in the checkerboard (Figure 11(b)), and corresponding direct-
ray positions pd without the prism at a known distance z. Note that
the camera calibration method [Zhang 2000] yields not only the
intrinsic camera matrix, but also three-dimensional coordinates of
feature points at corners. In the end, we use a set of positions pλ ,
pd and depth z of each checkerboard corner for prism calibration.

Prism Parameters. We use an Edmund Littrow dispersion prism
made of N-BK7 with 30-60-90 angles to disperse light. Figure 12
shows its transmission and refractive indices per wavelength. In
addition to these intrinsic parameters, we define its extrinsic param-
eters (position and orientation) as a six-dimensional vector ξ that
includes the parameters, sx , sy , sz ,vx ,vy , and vz in Equation (3).
We therefore can rewrite our refraction function (Equation (4)) as
pd = Ψλ (pλ , z; ξ ). Using the refraction function Ψλ and the cap-
tured positions pλ , pd and depth z, we can estimate ξ by nonlinear
optimization of the following objective function [Waltz et al. 2006]:

min
ξ

∑
λ∈Γ

∑
{pλ,pd }∈Πλ



pd − Ψλ (pλ , z; ξ )

22, (10)

where Γ is a subset of the wavelengths (450 nm, 500 nm, 550 nm,
600 nm, and 650 nm) used for calibration in our experiment, and Πλ

2We employ bandpass filters instead of a LCTF, since the LCTF alters the light path
through optical components inside the filter.
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Bandpass filters 

Prism

Camera

(b) Captured images for dispersion calibration

(a) Calibration setup

650nm filter 550nm filter 450nm filter

λ=450pλ=550pλ=650p

Fig. 11. (a) Our calibration setup to estimate spatially-varying dispersion.
(b) Captured spectral images present clear wavelength-dependent shifts.
For a corner pixel on an image at 650 nm, corresponding pixels at 550 nm
and 450 nm are shifted by 21 px and 50 px, respectively. We calibrate the
prism parameters ξ from the corresponding corners on the checkerboard
using Equation (10).
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30-60-90 angles). (b) Refractive indices.

(b) Distorted input (w/ prism) (c) Distortion corrected(a) Direct image (w/o prism) 
Fig. 13. (a) Ground-truth direct image of a checkerboard captured without
the prism. (b) Captured image with a prism, resulting in geometric distortion.
(c) Distortion-corrected image using our refraction model.

is a set of corresponding pairs pd and pλ at a depth z. This yields
highly accurate prism parameters; the average reprojection error
from pλ to pd is ∼0.51 pixel in our implementation.

Refraction Model. Once we know our prism parameters ξ and
our refraction function Ψλ (Equation (4)), we can build a refraction
model Ψ in matrix form, describing per-pixel relations between a
refracted pixel pλ and its corresponding direct-ray pixel pd , per
wavelength (see Section 4.1). The refraction model Ψ allows us not
only to calculate the dispersion model Φ for every pixel, but also to
correct geometric distortions caused by refraction (see Figure 13).
Figure 13(a) shows the captured checkerboard without a prism. Once
we have a prism in front of the camera, refraction through the prism
introduces geometric distortion in addition to dispersion, as shown
in Figure 13(b). We can correct this geometric distortion using the
refraction model Ψ, which warps the captured refracted image into
a direct-ray image (without the prism). Note that we use an inverse
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Fig. 14. Quantitative evaluation of our compact hyperspectral imaging on
a real-world scene. (a) Reconstructed hyperspectral image with geometric-
distortion correction (displayed as an sRGB image). (b) Reconstructed spec-
tral channel of 550 nm. (c) Spectral plots of six patches in the ColorChecker.
Refer to the supplemental material for complete plots of every patch.

mapping of the refraction model in order to avoid holes similar to
inverse texture mapping.

Dispersion Model. We define our dispersion function Φλ (Equa-
tion (5)) using the refraction function Ψλ (Equation (4)). Therefore,
once we have obtained our refraction model Ψ, we can compute
a dispersion model Φ for every pixel; we warp a pixel pλr ef to a
pixel pd via the refraction model Ψ, then warp the pixel pd to a
pixel pλ via its inverse model Ψ−1 (see Figure 5 in Section 4.2). The
dispersion model Φ then relates a pixel pλr ef to a pixel pλ . Note
that we had previously fixed a distance (700mm) for the dispersion
model where dispersion does not depend on depth (see Figure 6).

7 RESULTS AND VALIDATION
We validate the performance of our method by using both real data,
and synthetic data with ground truth. As shown in Figure 1(a), we
have built a prototype with a Canon 5D Mark III camera with a
50mm lens (Canon EF f /1.8 STM). We position a 30-60-90 prism in
front of the lens by installing it in a supporting structure made by a
3D printer. The dispersion model and camera response functions
are calibrated as described in Section 6. For the synthetic dataset to
be used for ground-truth evaluation, we use a public hyperspectral
dataset [Yasuma et al. 2010], and simulate dispersion with approxi-
mately one pixel shift per 10 nm wavelength (by taking into account
our optical component parameters, camera response functions, and
based on the refraction phenomenon as described in Section 4).

We reconstruct the hyperspectral images on an Intel i7-3770 CPU
3.40GHz with 32GB of memory. Our MATLAB implementation
takes approximately 45minutes in total to process a 512-by-512
hyperspectral image, with 23 wavelengths from 430 nm to 650 nm,
in 10 nm intervals. In particular, our edge restoration takes about
9minutes, the gradient-based optimization about 4minutes, and the
final hyperspectral image reconstruction about 30minutes.

For the real scenes, from the captured raw image of 3870-by-5796
resolution, we first discard boundary pixels due to occlusion by
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Fig. 15. Reconstructed hyperspectral images of real-world, casual scenes. For each dispersed RAW-RGB input, we show a reconstructed hyperspectral image
for each wavelength, displayed as an sRGB image. The spectral plots compare our reconstruction with the ground truth, measured by a spectroradiometer for
the patches shown.

the prism holder, resulting in 3300-by-4800 resolution. Then, we
downscale the captured high-resolution image to 600-by-860 with
bicubic interpolation for computational efficiency. We empirically
set the reconstruction parameters (Section 5) as: α1 = 10−5, β1 =
10−1, α2 = 10−4, β2 = 0.5×10−3, α3 = 0.5×102, and β3 = 0.5×10−1.

Spectral Accuracy. In order to evaluate the performance of our
system, we capture a scene with a ColorChecker under daylight.
As shown in Figure 14 and the supplemental material, our results
closely match the spectral power distributions of every patch, as
measured by a spectroradiometer.

Casual Hyperspectral Imaging. Our compact system enables ca-
sual hyperspectral imaging of indoor and outdoor scenes, as shown
in Figures 1, 2, 14, 21 and 19. Figure 15 shows additional results
for three different scenes. For each input RAW image with disper-
sion, we present the reconstructed spectral channels, as well as the
reconstructed hyperspectral image (displayed as an sRGB image).
Comparison with the ground truth data measured by a spectrora-
diometer is also presented.

Comparison with Existing Hyperspectral Imaging Systems. Fig-
ure 16 compares our system with other conventional hyperspectral
imaging systems (CASSI [Kim et al. 2012a], CTIS [Habel et al. 2012]
and PMVIS [Cao et al. 2011a]). They all are significantly larger and
more expensive than our system, since they rely on a coded mask
or collimating optics.
We use simulated data based on the image formation model of

each system. The top row shows the different systems, and the
second row the input. The third row shows the corresponding re-
constructions. For the conventional CASSI system, we simulated a
coded mask to embed spectral signatures using a monochromatic
camera. The results from CASSI show high spectral accuracy at
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Fig. 16. We compare our system with other conventional hyperspectral
imaging systems: CASSI [Kim et al. 2012a], CTIS [Habel et al. 2012], and
PMVIS [Cao et al. 2011a]. We evaluate image quality and spectral accuracy
by simulating the image formation model of each system. Since they rely on
a coded mask or collimating optics, they all are significantly larger and more
expensive than our system. The combined spectral and spatial accuracy of
our method is superior to the other systems, even though our system takes
a single dispersed RGB image as an input with the simplest setup.
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Fig. 17. Comparison with other RGB-to-spectrum methods ([Smits 1999]
and [Nguyen et al. 2014]). We show the reconstructed sRGB image of each
method, along with the average PSNR and SSIM values, and plot normalized
radiance for two color patches on the right, including RMSE values. Note
that we provide an RGB image without dispersion as input for Smit [1999]
and Nguyen et al. [2014].

the cost of poor spatial resolution, due to the coded mask pattern
carved in the input image. CTIS uses a diffraction grating to ob-
tain multiple dispersed RGB images along with a clear RGB image,
thus sacrificing spatial resolution. The system shows consistent and
moderately accurate performance; however, it utilizes only about
10% of the total image sensor area to capture input dispersion, re-
sulting in clear stair-step artifacts. In PMVIS, the system projects
each wavelength on a single pixel by using a dispersive unit and a
large-sized mask on a box, so the user can simply extract the pixel to
obtain a particular spectrum. In terms of spectral accuracy, PMVIS
produces very accurate results. However, it is the largest system,
and the spatial resolution is significantly reduced, due to the sub-
sampling mask. In comparison, our system takes a single dispersed
RGB image as an input with the simplest and most compact setup,
while the combined spectral and spatial accuracy is superior to the
other systems.

Comparison with RGB-to-Spectrum Methods. We compare our
method with other RGB-to-spectrummethods from a single RGB im-
age. Smit [1999] regresses a spectrum from the RGB input as a com-
bination of camera response basis functions. Nguyen et al. [2014]
introduced a data-driven function that converts RGB to spectrum
by training a radial basis function network with ground truth hy-
perspectral data. As shown in Figure 17, our method yields superior
results in terms of spectral accuracy.

Spectral Smoothness Priors. We employ spectral smoothness priors
in our reconstruction (the second and the third prior in Equations (7)
and (8), respectively). We explicitly tested impacts of the priors for
the ColorChecker scene (Figure 17) by testing results without the
priors in our reconstruction formulation. The average PSNR drops
about 8% from 32.75dB to 30.17dB.

Comparison with Inverse System Solvers. Inverse solvers such as
TwIST [Dias and Figueiredo 2007] or TVAL3 [Li 2011] have been
commonly used for reconstructing hyperspectral images in tradi-
tional systems. In principle, these solvers could also be used in our
method, by formulating our reconstruction problem (j = ΩΦi in
Equation (2)) as an inverse problem. However, since those solvers
rely heavily on rich spectral signatures all over the observed image
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Fig. 18. Comparison with other inverse system solvers (TwIST and TVAL3).
All the methods are given a dispersed RGB image as shown in the upper-left.
The sRGB images projected from each hyperspectral estimate and their
average PSNR and SSIM values are presented. TwIST and TVAL3 fail to
achieve high spectral accuracy due to the sparseness of spectral cues and
ambiguity of metameristic spectra, while our method closely matches the
ground truth.
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Fig. 19. If large areas of the input image (a) lack sufficient edge information,
our reconstruction may blur details around them (b). Spectral accuracy
could be degraded due to missing edges (c).

(achieved through additional optical elements), they fail to differ-
enciate metameristic spectra due to the sparse spectral cues in our
input (see Figure 18). In contrast, our method avoids the complex-
ity of such inverse problem by working in two different domains:
aligning the input in the spatial domain, and reconstructing spec-
tral information in the gradient domain. This strategy allows us to
exploit sparse cues more effectively, leading to higher spatial and
spectral accuracy.

8 LIMITATIONS AND DISCUSSION
In this section, we further evaluate our system in the presence
of suboptimal input. Refer to the supplemental material for more
results.

Edge Frequency. Our reconstruction quality depends on the edge
frequency of an input image. If a scene has not enough edge in-
formation, reconstruction quality degrades as shown in Figure 19.
Additionally, we have examined the impact of increasingly higher
frequency edges, as shown in Figure 20. Our reconstruction remains
relatively stable as the frequency increases; however, performance
degrades significantly when the dispersed edges overlap (the space
between edges becomes less than the half of the dispersion amount).

Edge Blurriness. To examine the impact of blurred edges, we gen-
erate a synthetic blurred ColorChecker (Gaussian convolution with
σ=1). The accuracy of the reconstructed spectrum (PSNR) is 30.50dB,
compared to the original 32.75dB shown in Figure 17.
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Fig. 20. Evaluation with varying edge frequency. (a) Synthetic RAW images
of seven bright stripes with different spacing between edges; 56, 42, 31,
25, 17, 13 and 10 in pixels. We set the amount of dispersion to 23 pixels
from 430 nm to 650 nm (10 nm per band). (b) Reconstructed spectrum for
each stripe, compared with ground truth. (c) Our reconstruction accuracy
degrades gradually (RMSE increases) as the space between edges decreases.
When the space becomes smaller than half of the dispersion magnitude (in
this example, 23/2 = 11.5 px), reconstruction quality degrades severely.

Illumination Environments. We tested our system under differ-
ent illumination environments other than daylight: halogen, and
solid-state plasma illumination. Figure 21 shows the two correspond-
ing reconstruction results. While halogen illumination is spectrally
smooth, plasma light has many high-frequency changes which vio-
late our assumption of spectral smoothness. Although our method
fails to recover these high-frequency spectral changes from the
plasma illumination, we can still approximate itsmain low-frequency
components.

Fluorescent Lighting. While our method performs robustly under
most illuminations, its performance under the strong-peak illumina-
tion of fluorescent light decreases. We have tested this by simulating
a synthetic illumination with three strong peaks (red, green and
blue), and reconstructing the spectra of 24 color patches for each
one. Compared to our results in Figure 17 (using the standard D65
illuminant), the accuracy of our reconstruction decreases about 15%,
from 32.75dB (PSNR) to 27.85dB.

Dependency on the RGB Sensor. Since we target casual spectral
imaging using a regular DSLR camera, we presume an RGB-filtered
camera by default; this broadens the applicability of our method, al-
though in turn, it makes it dependent on the particular transmission
functions of the sensor’s RGB channels. Our approach leverages
RGB channel separation, allowing us to locate edges accurately by
using our cross-channel prior (third term in Equation (6)). We con-
firm this by testing our method simulating a monochrome sensor
with a ColorChecker target: in the absence of separate RGB informa-
tion, our edge-restoration stage yields visibly worse results (average
PSNR drops 33.4%, from 32.75dB to 21.81dB).

Influence of Noise. Since our reconstruction method operates in
the gradient domain, it is sensitive to sensor noise. To minimize
this, we consistently use a low ISO speed (ISO 100). Moreover, we

Tungsten illumination Xenon illumination (Thorlab HPLS-30-4)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

430 480 530 580 630

R
ad

ia
nc

e

Wavelength [nm]

Ours

GT

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

430 480 530 580 630

R
ad

ia
nc

e

Wavelength [nm]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

430 480 530 580 630

R
ad

ia
nc

e

Wavelength [nm]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

430 480 530 580 630

R
ad

ia
nc

e

Wavelength [nm]

1

2

1

2

1 2 1 2

Fig. 21. Reconstructed hyperspectral images under different illuminations
of halogen and solid-state plasma lights. The top row presents the recon-
structed sRGB images for the two different light sources without white
balancing. The bottom row shows the spectral plot of two sample patches
of different color chalks, compared with ground truth data measured by a
spectroradiometer. While we can capture the low-frequency tendency of
the spectrum for the halogen case, high-frequency details introduced by
the plasma illumination cannot be captured.

introduce TV-terms (L1-norm of spatial gradients) in Equations (6)
and (7) to handle noise when restoring edges and reconstructing
the spectrum from spatial-spectral gradients.

Depth from Dispersion. Since dispersion increases proportionally
with depth within a certain range, as shown in Figure 6(a), it should
be possible to estimate depth by analyzing the amount of dispersion,
similar to depth from refraction [Baek et al. 2016]. However, this
relationship between dispersion and depth only holds for close dis-
tances within 200mm, while an ordinary lens cannot capture sharp
images at such a short distance, and a macro lens has an extremely
shallow depth-of-field. Based on these observations, developing a
single-shot depth-from-dispersion algorithm remains an interesting
avenue of future work.

9 CONCLUSION
We have presented a novel compact hyperspectral imaging system,
requiring only a conventional DSLR camera and a prism, thus en-
abling low-budget hyperspectral photography. In addition, we have
provided a novel image formation model of dispersion, and a novel
calibrationmethod based on our formulation.We have demonstrated
results on various natural scenes; the combined spatial and spectral
accuracy of our technique is superior to previous approaches, which
use more complex setups and may cost orders of magnitude more.

As we have seen, our system is sensitive to noise, and its perfor-
mance may drop depending on the edge properties of the scene, or
its illumination. Addressing these issues, and deriving a complete
depth-from-dispersion model, are interesting avenues for future
work.
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