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Fig. 1. Overview of our reconstruction algorithm. We take a dispersed RGB image as an input. We align the dispersed image and extract edge locations so that
we can locate dispersion around edges to use it as evident spectral cues (Section 3.1). Gradient values on the edge pixels are then effectively estimated from
dispersion (Section 3.2.1). We estimate a hyperspectral image using the gradient information as spectral cues (Section 3.2.2). Note that geometric distortion
introduced by refraction of a prism is corrected for the final hyperspectral image.
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In this supplemental material, we provide the validation of our dis-

persion model, the details of our calibration method and reconstruc-

tion method. For the dispersion model, we provide the experimental

results comparing the prediction of our model and the simulation

of a professional ray tracing software. For calibration, we describe

the experimental details of obtaining the spectrum-to-RGB matrix

Ω and the dispersion model Φ. For reconstruction, solution of each

subproblem (edge restoration, gradient reconstruction and intensity

reconstruction) is described.

1 DISPERSION MODEL VALIDATION
We validate the accuracy of our dispersion model Φ using the pro-

fessional ray tracing software for optics engineering, Zemax. We

simulate our imaging setup in Zemax, where we place a 30-60-90

prism made of N-BK7, in front of a Canon 5D Mark III camera

equipped with a 50mm lens. We first capture a point at a distance

of 700mm using the camera-prism system. We then simulate the

dispersion of seven visible wavelengths from 400 nm to 700 nm,

using both our dispersion model Φ, and Zemax. Figure 2 shows a

strong agreement between both predictions.

2 CALIBRATION
We propose a compact hyperspectral imaging setup consisting of

a prism in front of an RGB camera. We describe the calibration
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Fig. 2. We compare the predictions of our dispersion model Φ with those of
a professional optics simulation software, Zemax. We place a 30-60-90 prism
in front of a 50mm lens with a Canon 5D Mark III camera, and capture a
point at a distance of 700mm. Dispersion is accurately predicted by our
method (seven wavelengths from 400 nm to 700 nm are shown), with a
strong agreement with the professional software.

method of our system in details including practical issues that we

encountered in calibration. For the completeness of the supplemen-

tal material, we first rewrite our image formation model as follows:

j = ΩΦi, (1)

where j is the vectorized RGB image and i is a vectorized hyper-

spectral image. Ω is the conversion matrix from spectrum to RGB

channels, and Φ describes the dispersion effect represented as a

matrix relating corresponding pixels of different spectrums.

Obtaining Ω. We first describe how to obtain Ω, the conversion

matrix from spectrum to RGB. This process is called as radiometric

calibration. We place a sample of Spectralon illuminated by a Xenon

light source (Thorlab HPLS-30-4). We capture the spectral distri-

bution function R (λ) of the reflected radiances from the sample

with a spectroradiometer (Jeti Specbos 1200), of which has spectral
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resolution as 10 nm bandwidth from 400 nm to 700 nm. Then we cap-

ture linear hyperspectral images of the same sample with an RGB

camera (Canon EOS 5D Mark III) equipped with an liquid crystal

tunable filter (Varispec VIS LCTF) in front of the camera. Note that

we capture the images with three different exposures to obtain valid

signals without under and over saturations for the visible spectrum

range. Captured imageM (c, λ) is the linear hyperspectral image of

wavelength λ for the channel c ∈ {red,дreen,blue}. We also mea-

sured the transmission function of the liquid crystal tunable filter

Tλ (λ′), where it describes the transmission of wavelength λ′ when
we set the LCTF to capture wavelength λ. From the measurements,

we can compute the spectral response for each channel, Ω (c, λ) as
follows:

Ω (c, λ) =
M (c, λ)∑

λ′
R (λ′)Tλ (λ′)

. (2)

By representing the spectral response in a matrix form, we obtain

Ω ∈ R23×3 for 23 wavelengths from 430 nm to 650 nm in 10 nm

intervals.

Obtaining Φ. Our current prototype has two practical issues for

performing the dispersion calibration. First, to obtain the disper-

sion model Φ, we captured images of different spectral channels by

employing bandpass filters in front of our system. However, since

the bandpass filters only cover a part of the captured image due to

the small size of the bandpass filter, we captured multiple images

of a particular channel by translating the bandpass filters which

is mounted on a holder. Second, the prism changes view direction

of the camera by refracting light rays making the corner points

of a same checkerboard cannot be captured with and without the

prism.We therefore selected some corner points in the checkerboard

to be used for camera calibration, and other corner points in the

checkerboard will be used for prism calibration.

3 RECONSTRUCTION
Our reconstructionmethod consists of three stages: edge restoration,

gradient reconstruction, and hyperspectral-image reconstruction.

The edge-restoration stage (Section 3.1) spatially aligns an input

dispersed RGB image to obtain edge inforamtion without disper-

sion. In the gradient-domain reconstruction stage (Section 3.2.1),

we effectively extract spectral cues at edges in the gradient domain.

We then combine this gradient information as a spectral cue to

recover accurate spectral intensities in the hyperspectral recon-

struction stage (Section 3.2.2). The overall pipeline is described in

Algorithm 1. In this supplemental material, we describe additional

details of each stage.

ALGORITHM 1: Hyperspectral reconstruction

1: i
aligned

= argmin

i


ΩΦi − j

22 + α1




∇xy i


1 + β1



∇λ∇xy i


1

2: ĝxy = argmin

gxy




ΩΦgxy − ∇xy j



2

2

+ α2



∇λgxy




1 + β2



∇xygxy





2

2

3: iopt = argmin

i


ΩΦi − j

22 + α3




Wxy ⊙
(
∇xy i − ĝxy

)


22 + β3 ∥∆λ i∥2
2

4: i
fin
← refine(iopt, Ωi

aligned
)

3.1 Restoring Edges from Dispersion
The edge restoration stage estimates the latent edge location for a

given dispersed RGB image by estimating a spatially aligned hyper-

spectral image. We solve the equation as below:

ialigned = argmin

i


ΩΦi − j

22︸       ︷︷       ︸

data term

+α1



∇xy i


1 + β1




∇λ∇xy i


1︸                            ︷︷                            ︸
prior terms

.

(3)

The explanation of each term is described in Section 5.1 of the main

paper.

Optimization. We employ the alternating direction method of

multipliers (ADMM) to split Equation (3) into l2 and l1 terms. We

introduce slack variables z1 and z2 to split our problem into three

subproblems:

f (i) = 

ΩΦi − j

22 , д (z1) = α1∥z1∥1, h (z2) = β1∥z2∥1,

so that our optimization problem described as Equation (3) is re-

formulated as:

min

i,z1,z2
f (i) + д (z1) + h (z2)

subject to ∇xy i − z1 = 0, ∇λ∇xy i − z2 = 0.
(4)

Refer to [Boyd et al. 2011] for more detailed description of the

ADMM framework. The ADMM solves this problem by optimizing

Equation (4) with respect to each variable i, z1, and z2 iteratively.
The scaled form of ADMM subproblems are:

i(k+1) = argmin

i

f (i) + ρ1
2





∇xy i − z(k )
1
+ u(k )

1






2

2

+

ρ2
2





∇λ∇xy i − z(k )
2
+ u(k )

2






2

2

z(k+1)
1

= argmin

z1
д (z1) +

ρ1
2





∇xy i(k+1) − z1 + u(k )
1






2

2

z(k+1)
2

= argmin

z2
h (z2) +

ρ2
2





∇λ∇xy i(k+1) − z2 + u(k )
2






2

2

u(k+1)
1

= u(k )
1
+ ∇xy i(k+1) − z(k+1)

1

u(k+1)
2

= u(k )
2
+ ∇λ∇xy i(k+1) − z(k+1)

2
,

(5)

where u1 and u2 are Lagrange multipliers. The variable i(k+1) is
updated by solving only l2 terms, which is done by the conjugate

gradient method. The slack variables z1 and z2 are updated by using
a soft-thresholding operator, which is given as:

Sθ (x) =



x − θ x > θ
0 |x| 6 θ
x + θ x < −θ ,

(6)

where θ is a parameter that determines the strength of sparsity of

gradients. The Lagrange multipliers u1 and u2 are then updated via

gradient ascent to relate the objective function with constraints in

Equation (4). See Algorithm 2 as an overview.

3.2 Reconstructing Spectral Information
In this stage, we first obtain spectral signature in a gradient do-

main (Section 3.2.1), and we use this information for spectral image

reconstruction (Section 3.2.2). The key insight of this stage is de-

scribed in Section 5.2 in the main paper.
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ALGORITHM 2: ADMM solution of Equation (5)

1: repeat

2: i(k+1) = argmin

i
f (i) + ρ1

2




∇xy i − z(k )
1
+ u(k )

1





2

2

+
ρ2
2




∇λ∇xy i − z(k )
2
+ u(k )

2





2

2

3: z(k+1)
1

= S α
1

ρ
1

(
∇xy i(k+1) + u(k )

1

)
4: z(k+1)

2
= S β

1

ρ
2

(
∇λ∇xy i(k+1) + u(k )

2

)
5: u(k+1)

1
= u(k )

1
+ ∇xy i(k+1) − z(k+1)

1

6: u(k+1)
2

= u(k )
2
+ ∇λ∇xy i(k+1) − z(k+1)

2

7: until the stopping criterium is satisfied.

3.2.1 Gradient-based Reconstruction. We first estimate a stack

of spatial gradients gxy for each wavelength by solving a following

problem:

ĝxy = argmin

gxy




ΩΦgxy − ∇xy j



2

2︸                ︷︷                ︸
data term

+α2



∇λgxy




1 + β2



∇xygxy





2

2︸                              ︷︷                              ︸
prior terms

.

(7)

See Section 5.2.1 of the main paper for more detailed explanation

of the formulation.

Edge-based Objective Reformulation. Prior to solving the objective,
we reduce the region of the optimization problem to edge pixels

only (Equation (7)). Since the spectral signature is only observed

around edges, solving the objective in the entire pixel deteriorates

the performance of optimization.

We first describe how to narrow down the region of interests in

the gradient domain. Given the edge information obtained from

the edge restoration stage (Section 3.1), we define forward and

backward edge-pixel extractingmatrices in a gradient domain:Mf ∈

R2EΛ×2XYΛ and Mb ∈ R
2XYΛ×2EΛ

, where X and Y are the width

and height of an image, and E ≪ XY is the number of edge pixels.

The forward and backward operations with the matrices are written

bM

fM

xyvxyg

X
Y

Λ

E

ΛX

Y

Fig. 3. The forward and backward edge extraction matrices denoted by
Equation (8). The left figure shows a stack of gradient images for each
spectral channel gxy , and the right figure describes the extracted gradient
values on edges denoted by vxy .

as below:

vxy = Mf gxy , gxy = Mbvxy , (8)

where vxy ∈ R2EΛ denotes gradient values at the edge pixels. The

forward matrix Mf extracts values at the edge pixels of a hyperspec-

tral image in a gradient domain denoted by gxy , while the backward

matrix Mb expands the resolution of the gradient values on edge

pixels vxy to the original resolution by locating the values at the

original positions and filling zero in non-edge pixels. See Figure 3 for

graphical description of the operators. Based on the notation above,

we reformulate the gradient reconstruction problem (Equation (7))

so that we only need to optimize edge pixels:

v̂xy = argmin

vxy




ΩΦMbvxy − ∇xy j



2

2︸                     ︷︷                     ︸
data term

+α2



∇λvxy




1 + β2



∇xyMbvxy





2

2︸                                   ︷︷                                   ︸
prior terms

.
(9)

The first term is a data term that ensures the image formation

model (Equation (1)) in gradient domain over edge pixels. Since

the term ΩΦMbvxy has zero values in non-edge pixels, we assign

zero at non-edge pixels in the observation ∇xy j as well. The two
other terms are prior terms for gradient values. The first prior is

the spectral sparsity of gradient used in the spatial alignment stage

(Equation (3)). It enforces sparse change of gradient values along

the spectral domain. The second prior is a spatial smoothness for

smooth change of gradients in the spatial domain, which reduces

the artifacts of gradient values.

Optimization. We solve Equation (9) with ADMM, splitting l2
and l1 terms, and employing a slack variable z3. The problem is then

splitted into two subproblems:

f
(
vxy
)
=




ΩΦMbvxy − ∇xy j



2

2

+ β2



∇xyMbvxy





2

2

, д (z3) = α2∥z3∥1.

We then combine constraints induced by employing the slack vari-

able so that we formulate an ADMM objective:

min

vxy,z3
f
(
vxy
)
+ д (z3)

subject to ∇λvxy − z3 = 0.
(10)

The scaled-form solution of the ADMM objective is:

v(k+1)xy = argmin

vxy
f
(
vxy
)
+

ρ
2





∇λvxy − z(k )
3
+ u(k )

3






2

2

z(k+1)
3

= argmin

z3
д (z3) +

ρ
2





∇λv(k+1)xy − z3 + u(k )
3






2

2

u(k+1)
3

= u(k )
3
+ ∇λv(k+1)xy − z(k+1)

3
,

(11)

where u3 is a Lagrange multiplier. The vxy -subproblem is solved by

the conjugate gradientmethod, and the solution of the z3-subproblem
is obtained by soft-thresholding (Equation (6)). The optimization

process of this stage is described in Algorithm 3. After obtaining

the gradient values at edge pixels as v̂xy , we compute ĝxy , a stack
of gradient images for each spectral channel: ĝxy = Mb v̂xy .

ALGORITHM 3: ADMM solution of Equation (11)

1: repeat

2: v(k+1)
xy = argmin

vxy
f
(
vxy
)
+

ρ
2




∇λvxy − z(k )
3
+ u(k )

3





2

2

3: z(k+1)
3

= S α
2

ρ

(
∇λv(k+1)

xy + u(k )
3

)
4: u(k+1)

3
= u(k )

3
+ ∇λv(k+1)

xy − z(k+1)
3

5: until the stopping criterium is satisfied.
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3.2.2 Reconstructing Spectral Images. The spectral cue ĝxy is

obtained in the previous stage (Section 3.2). We use this information

to reconstruct a hyperspectral image so that we can properly rely

on spectral signature. The reconstruction is performed by solving

the equation below:

iopt = argmin

i


ΩΦi − j

22 + α3




Wxy ⊙
(
∇xy i − ĝxy

)


22︸                                                ︷︷                                                ︸
data terms

+ β3∥∆λ i∥2
2︸     ︷︷     ︸

prior term

.

(12)

See Section 5.2.2 in the main paper for more detailed explanation

of the formulation. Since Equation (12) consists only of l2-norm
terms, we solve it using a conjugate gradient method iteratively by

clamping intensity values from zero to one.

Detail-Guided Filtering. We enhance the spatial details of the

estimated hyperspectral image iopt by applying an edge-aware fil-

tering [He et al. 2013] to each reconstructed hyperspectral channel,

using the aligned image Ωi
aligned

as guide. This leads to our final

reconstructed image i
fin
, with high spectral and spatial accuracy.
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