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This supplemental document provides additional information and
results in support of the primary document. Refer to Table 1 for the
notations and symbols used in this paper.

1 JOINT LASER-SENSOR CORRELATION
MODEL

The joint laser-sensor model is derived as Equation 1 following the
previous related work [Chen et al. 2020; Hernandez et al. 2017].

Hr =Pppg - (®* (A= Hr+Lg))+Lpcr
=(@®+Ax«H,+®=Ly)+Lpcgr
= ((Es * Gs) * Gy * Hy + (Es * Gs) * Lg) + Lpcr
= ((Es = (Gs * GI) * Hy + (Es * Gs) * Lg) +Lpcr , (1)
= ((Es * Gjg * Hy + (Es * Gs) * Lg) + Lpcr
= (¥ (t;I, x5, 055) * Hy + Lg) + Lpcr
=Y (t;1}, ks, 055) * Hy + 175

where Pppr denotes the photon detection efficiency. L, is the am-
bient light and Lpcp is the dark count rate. @ is the sensor model
function that can be expressed in the form of convolution between
exponential function Es and Gaussian function Gs. A is the laser
function that has the shape of Gaussian G;. Note that the convolu-
tion of two Gaussians Gs and G; can be merged to a single Gaussian
G- The convolution of Es and G is then expressed as ¥ that has
three parameters Ij, ks, and o75. L; and Lpcg can be summed to
a single offset value 7;. Our joint laser-sensor correlation model
finally has four parameters and these values are optimized in our
self-calibrating pipeline.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SA Conference Papers "23, December 12-15, 2023, Sydney, NSW, Australia

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0315-7/23/12.

https://doi.org/10.1145/3610548.3618140

Table 2 summarizes the type of data (confocal or non-confocal),
as well as the dimensions of the transient data, the dimensions of
the reconstructed volume, the total reconstruction time, and the
number of iterations before convergence; note that most of our
scenes are significantly larger than previously reported results by
transient optimization methods.

3 ADDITIONAL RESULTS

This section provides additional validations and results.

Manual parameter adjustment vs. our self-calibration. Figure 1
compares the estimated volumetric intensities of BIKE and REs-
OLUTION scenes by two different methods: the light cone trans-
form (LCT) [O’Toole et al. 2018] and ours. To handle noise in the
input dataset, we manually tweak the SNR parameter in the LCT
method with a very wide range from 0.001 to 1.0. Our method yields
clearer results than any of the results under the explored values for
the SNR parameter of LCT, throughout all exposure levels.

Progressive optimization results. Figure 2 show detailed progress
of the optimization in the DRAGON and ERATO scenes, displaying
the evolution of the phasor-field kernel until the converged state.
While the full optimization takes 100 iterations (1.28 hours), after
only 50 iterations (39 minutes) the converged phasor-field kernel
parameters already yield volumetric and geometric reconstructions
very close to the converged result, while the remaining iterations
refine more local details.
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Figure 1: Comparisons of the estimated volumetric intensities of BIKE and RESOLUTION scenes by the light cone trans-
form [O’Toole et al. 2018] and ours. To handle noise, we changed the SNR parameter o between 1 and 0.001 for different
exposure times. In all exposure levels, our volume intensities outperform those of the LCT with manually selected parameters.
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Figure 2: Progressive optimization of volumetric intensity, geometry, phasor kernel, and transient measurement samples of
the ErRaTo and DRAGON scenes, showing how our reconstructions quickly converge after only 100 iterations.
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Table 1: Main notations and symbols used in the paper. Table 2: Configurations of our input datasets, including con-
Symbol Description verge time and the number of iterations needed.
X =Xo..Xx Light path of k +1 vertices Scene Confocal Trans. measurement Volume dimension Time [hr. (#iter.)]
X] Light source point on the relay wall
F . g Bunny Y 256 X 256 X 1024 256 X 256 X 201 1.93 (100)
Xg Surface point in the hidden scene £ Dragon Y 256 X 256 X 1024 256 X 256 X 128 1.28 (100)
Xs Sensor point on the relay wall £ Erato Y 256 X 256 X 1024 256 X 256 X 128 1.28 (100)
X, Voxel in a volumetric grid %" Indonesian Y 256X 256 X 1024 256 X 256 X 128 1.93 (150)
ng Surface normal in the hidden scene 34 Y 64X 64X 500 64X 64 X105 1.05(300)
. Bike Y 256 X 256 X 512 256 X 256 X 64 1.73 (170)
G Scene geometry parameters: points x4 and normals ng F  Resolution Y 256 X 256 X 512 256 X 256 X 26 133 (300)
t=1ty...tr ~ Time delays on k + 1 vertices & SU Y 64 X 64 X 2048 64 X 64 X 584 6.10 (200)
d Distance between the hidden surface and the relay wall 44 N 130180 X 4096 180 X 180 x 417 3.76 (150)
. NLOS N 130 X 180 X 4096 180 X 180 X 417 4.38 (180)
14 Space of all light paths
Yk Space of light paths of k + 1 vertices
T Space of temporal delays
c Speed of light in vacuum
tof (X) Total time of path X
K Time-resolved path contribution
H Transient measurements
Hyr Transient measurements filtered by a phasor kernel
H, Rendered transient illumination
Hg Rendered transient after laser-sensor model applied
D () Geometry estimation function
p O Reflectance function at vertex
V() Visibility function
T() Path throughput with geometric attenuation/visibility
R() Transient rendering function
Lt Volumetric intensity backprojected by Rayleigh-
Sommerfeld integrals of phasor-field diffraction
Qpt Ilumination frequency of phasor field kernel
Opf Ilumination standard deviation of phasor field kernel
P() Filtering function with a phasor field kernel
I Laser energy intensity
o] Standard deviation of Gaussian laser pulse signal
Ks Sensor sensitivity decay rate
Ns Sum of ambient light and sensor dark count rate
oys Standard deviation of Gaussian parameter for ¥ ()
A() Light source emission function
D() Sensor sensitivity function
¥ () Joint light-sensor correlation function
Opf Parameters of phasor field kernel: Qp, opf
S8 Parameters of laser and sensor models: oy, I, ks, s
C)e) Parameters of per-voxel albedo p
<) Set of optimizing variables: ® = {@p¢, Oy, OG }
L Loss function
Ao Loss-scale balance hyperparameters

T Set of regularization terms
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